A Guide to Project Forecast

Anyone working in the project world has heard of the word ‘forecast’. The most commonly asked question from the senior executive management team is ‘how much will it cost at completion?’ Most of the time, this question cannot be answered with great certainty. It is, after all, an educated guess based on currently known risks. This article will hopefully provide you with some tips and insights to producing a reliable project forecast.

What is Project Forecast?

A project forecast is a prediction of the project outcome in terms of schedule and cost. In other words, a competent Project Manager will be able to answer the following questions confidently:

  1. When will the project complete?
  2. How much will everything cost?

This prediction is of course based on current project performance indicators and future assumptions. Current project performance indicators are real project data being collected as the project progresses. Based on these data, a certain trend or trends can be identified. Future predictions rely on the statistics from these trends and can be used to project a final estimate at completion (EAC).

If the data paints a true picture of where the project is heading, a lot can be done to keep the project on track and within budget. The Project Manager will have the proactive ability to make critical decisions to realize opportunities, reduce or mitigate risks to shape the outcome of the project.  If a construction job is at the risk of running behind schedule and therefore going over budget, a Project Manager may wish to look into solving productivity issues or introduce night crews. These are big decisions and it begs the question, ‘how do I know if the EAC is accurate?’

There are many factors that will impact the project performance and therefore change the future assumptions.  All of them are intertwined and any deviation has the potential to skew the final estimate at completion. So what are the things we must consider?

Understand the Project Scope

The engineers can design a swimming pool, but it will not be of use to the procurement and construction team if they are prepared to build a skating rink. It is crucial for the entire project team to clearly understand the scope of the project. Once everyone is on the same page then they can speak the same language. A properly developed project schedule provides a comprehensive visual of the entire project scope and it can be a helpful tool to track and monitor the deliverables. If you cannot produce a schedule for your project to show logical sequencing of activities and properly plan and allocate resources to each activity, that may mean you need to go back to the drawing board to define the objective that you are trying to achieve. Without a properly understood definition of the scope, the execution of the ‘unknown’ is extremely risky and your forecast will be a wild guess.

Use Real Data

Project Managers often times ‘pad’ the project forecast and the over-estimation is usually based on a ‘just in case’ scenario to justify not having to repeatedly request for a budget increase. Afterall, delivering a project within a ‘promised’ number will make you look good, right? If the project scope is clearly identified and understood, project resources can be properly allocated. Once a proper project schedule is established, keep track of the actual performance of each activity to gain a sense of how the project is progressing. Key performance indicators such as productivity factor, SPI, CPI..etc are valuable in presenting where the project is heading. Keeping up with the industry market researches on all relevant project resources will aid in providing a more realistic trend and better business decisions.

For instance, rising fuel costs have a tremendous impact on almost everything. The fuel cost from a year ago can no longer be used in the assumption for fuel costs going forward. How much will it go up and at what rate?

Whenever available, update your assumptions to reflect the real data to increase the accuracy of your forecast.

Choose the Best Techniques

Not every project is the same and there may be constraints that pave the way to which projections are made. For instance, a company trying to launch a new product may not have historical data to rely on and therefore will have to depend on market surveys to make an educated assumption. Where most projects can rely on already established industry data, there will be factors that differentiate these projects to make them unique and the methodologies used to generate the project forecast should reflect so.  Choose a technique that best utilizes the available data.

The Bottom Line

Producing an accurate project forecast is no easy task. It should never fall to one person’s responsibility but rather a collaborative task that engages the entire project team. Experienced schedulers and cost controllers should be able to provide accurate performance data and metrics. A regular joint forecast review with the Project Manager and the Scope Owners offer great opportunities to validate the data provide, evaluate all known and unknown risks, and formulate a realistic schedule and cost forecast. Good communication is certainly vital to the success of project execution.

Posted in Cost Control
Why Including Schedules With your Bid is Valuable

Including an industry-standard Primavera P6 or MS Project schedule with your bid offers many valuable aspects, both for your bid strength and for your project team.

Having reviewed bid packages for owner’s teams in the past, we’ve noticed how many submissions ignore the schedule component, or have clearly spent very little effort on that part of the bid package. Most owners contracting out large project are concerned with quality and accountability when it comes to bid reviews; they need to be able to defend their chosen contractor(s) in the years to come when issues and costs may be in the forefront of management’s and investor’s / regulator’s minds. This accountability and transparency is usually accomplished with a detailed scoring system. Bid packages are scored on costs, safety and environmental / regulatory / community provisions, execution and contracting strategies, risk mitigation strategies, corporate reputation, etc. One of the major scoring metrics has become schedule quality. This is because the schedule gives credence to the other claims made in the bid package.

Estimate Quality

The quality of an estimate is often assessed in terms of its completeness, realism, and relevancy. An incomplete estimate is one that may not include certain overhead costs, supporting requirements, or missing detailed scope. If cranes are required, but provision for crane mats or other supporting costs are not included, this leaves an impression that the details have not been thought through, and therefore there is a higher risk of cost overrun and mismanagement. An estimate lacking realism may assume high worker efficiency in remote frigid locations. Or, such an estimate may assume little overhead, assuming many parallel work-fronts that are simply not possible with the available workforce or work area access restrictions. Finally, an estimate that is not relevant may not include current rates, productivity, and worker availability data. All of these aspects can be improved with good planning integration using the schedule and an integrated scheduler.

Designing the work in a schedule can help visually ensure cost items are not missed. Walking through the project schedule’s Gantt chart allows the planning team the opportunity to consider questions like:

  • what do we need to have ready for this chain of tasks?
  • what should we have in place to support this work?
  • how does this work tie-in to existing infrastructure, and other areas of the project?

Any gaps found while developing the schedule in this way can be addressed in the estimate as well. Furthermore, when resource-loading a schedule, the planning team can consider the effort required, making sure the assumptions align between the schedule and estimate. In reviewing the schedule with experienced construction representatives, for example, recent productivity, availability, and overhead requirements can be discussed and integrated into both schedule and estimate.

By integrating detailed schedule planning and reviews into the bid package, you are able to strengthen your estimate, prepared to back up your assumptions with your plan, and impress-upon your potential client that you have thought of the work completely, in a realistic and relevant manner. This also has the benefit to your team of fostering communication about these assumptions, leading to a higher confidence in the bid as a whole.

Execution Strategy

Most owners want to review the execution strategy, to help distinguish bidders from each other. Well thought out strategies recognize and mitigate risks, as well as find opportunities for increased schedule or cost efficiency. To illustrate this, a schedule can help in presenting, for example, a specific risk avoidance strategy. Walking through a schedule can reveal potential issues with an execution strategy that may not be apparent in a more abstracted desk exercise. For example, multiple simultaneous work fronts can be easily identifiable via the schedule, and may not be as apparent otherwise.

As part of the execution strategy, associated strategies include contracting, worker recruiting, security and access, safety, and other strategies. These can all be reviewed in a wholistic way when using the schedule as a common facilitator. For example, although safety overhead support may be calculated as a percentage of direct costs, simultaneous or overlapping work fronts may alter either the safety staffing plan or the schedule once over-allocations are spotted. Without this planning tool, you run the risk of either un-forecasted delays later on, or higher safety risk levels. These are the holes in execution (and related) plans that owners are looking for in bids to poke at and to score lower in their evaluation procedures.

Risk Management

One of the common methods for producing a risk profile for a project is through a schedule-driven risk analysis. This process provides your team the ability to do a thorough risk analysis, by reviewing not only scope items, as you may find in an estimate or a drawing. This process also facilitates discussion on other aspects, such as seasonal risks, schedule slippage risks, impacts relating to overhead and support personnel, and may even bring light to risks not previously considered in detail, like delivery and storage complications of off-the-shelf materials.

Owner’s teams appreciate a thorough and detailed risk assessment, as this shows that your team cares for the risk of cost overruns as they do. Furthermore, a detailed risk assessment based on schedule shows the owners that you have a more sophisticated management team, able to see the links between cost, risk, and schedule. This allows owners to score your proposal higher than others, while also allowing them to easily defend your proposal to senior managers, showing the care taken in assessing, and therefore preparing to avoid, costly risk items.

Change Management

In terms of bid proposals, Change Management may not seem like something worth considering. However, projects almost never end up where the initial plan began. Although your team’s detailed change management process may not be part of your bid submission, having a quality schedule submitted in your proposal can help your team during that change process once the job is ongoing. One reason for this is that rare but often time-consuming claims procedures get bogged down due to obscure definition of the original agreement in terms of the specific subject of a claim. Furthermore, if a claim proceeds to court or arbitration, having a long and detailed history insures your assertion of what the original understand and expectations were will have more weight. In this way, having a quality schedule submission can pay dividends later in the project, especially in the event that disputes arise in the validity or scope of change orders and claims.

In Summary

To recap then, quality schedules can improve your bid submission in several ways. One of these is in the scoring of your bid by the owner’s team; quality schedules allow for increased scores in scheduling and project controls areas, as well as indirectly in execution strategy, estimate, and risk management areas. Furthermore, the very act of developing a schedule will help improve your team’s submission overall, by bringing certain constraints and requirements to light, while also ensuring a tight relationship between execution plans and the estimate. Finally, a quality schedule in your bid submission helps set up your execution team with a solid basis when confronted with required change orders and possible claims management proceedings in the future. Although many see the benefits in schedules during the execution phase of a project, these reasons support the inclusion of a schedule as early as bid submission.

Posted in Project Scheduling
Accruals Discussion: A Blog About Accruals and Their Impact on Project Tracking and Reporting

When tracking project costs, accruals and progress must be considered carefully. When expenses arise during a project, it is common for some companies to “back charge” expenses incurred to accounting at the end of the period in which the expenses occurred. This is known as accrual accounting which is required by generally accepted accounting principles (GAAP). In contrast to accrual accounting, cash only accounting is a common method of accounting when tracking project costs.

Accruals are not an exact science. There are always assumptions and rules of thumb. Some problems will have simple solutions, like using the last month as an estimate for the next month’s costs, but other problems are more complex. Inaccurate estimates are often due to insufficient contractual provisions or inaccurate estimates. Tracking project costs is only half the battle; a successful project will also involve accurate cost control throughout the process. Accruals must be carefully considered if your company wants reliable figures to create accurate budgets, forecasts and reports.

What is an accrual?

What is an Accrual? Accruals are one of the most common ways that accountants measure income, expenses, and profit. Accruals are used to account for income or expenses that are earned, but will be realized (or paid) at a future date. This can be due to timing issues, such as an expense incurred in the current period, but not paid until the next period; or it can be due to non-payment, such as accounts receivable. What is an example of an accrual? A merchant may sell a product on December 31st, 2021 and bill at that time. That transaction would be recorded as revenue (sales) in the business’s 2021 accounting records. However, the merchant may not receive payment from the customer until January 30th, 2022. The sale would therefore also be recorded as a receivable (unpaid sales) in the business’s 2021 accounting records. Acquisitions and mergers are often handled using accruals to record the purchase price of a company at the time of acquisition. Since payments for stock purchases don’t occur immediately, this allows for accurate recording of both sides of the transaction – income and expenses – at the time of sale.

Why is it important to track accruals in a project?

Accruals in projects are important to track because they can artificially inflate or deflate progress if they are not properly accounted for in your project’s costs. Inaccurate accruals can cause a project’s reported progress to deviate from its actual performance. Accrual-based accounting employs the matching principle of accounting, which holds that expenses should be matched with revenues in the period in which they occur. For projects, this translates to recognizing costs, even partial ones, when the work / service / material is completed / supplied. Therefore, mismatches between progress and costs will affect all cost performance calculations and measures.

Troubleshooting when things don’t work out as planned

When assigning accruals, there must always be a match between assessed progress and assessed costs. When progress is found to have been incorrectly assessed, the corresponding accrual (or recognized costs) must also be corrected. To insure your project cost tracking stays accurate, be sure to address your actual (paid plus accrued) costs at the same time.

Furthermore, to insure your project’s contractors are in step, it will also be helpful to align accruals of contractor revenues with your project’s associated, and accrued, costs. Having regular meeting where progress and costs / revenues are aligned can help to avoid misunderstandings, which should lead to lower instances of claims. This should also expedite contract closeouts, as there would be minimal assessment to be done at the end.

Knowing the basics of accruals will help you budget, forecast and report project cost data with more accuracy. It will also help you in reducing contract claims and closeout issues. Properly accruing project costs along with progress will insure your project team has the most accurate cost data available, feeding into the most accurate cost performance calculations and assessments available.

Posted in Uncategorized
Earned Value Management Series: Part 4 – Progression in Detail (EVMS and Costs)

In this article, we will take a look at formulas and processes available to project teams using an Earned Value Management System (EVMS).

These formulas operate on the same principle as any such a system, vulnerable to a garbage in – garbage out weakness. This weakness, “GiGo”, is a feature whereby data analytics only provides accurate results when inputs are also accurate and relevant (Rose et al., 2011). In an EVMS, the two main data inputs are original estimate / budget / baseline data, and progress / update / actuals data. We will review these data points, and their resulting analysis that EVMS provides.

Common Earned Value Management Data Points

Budget at Completion – BAC

One of the foundational EVMS data points is the budget at completion. This represents the baseline or total estimate, sometimes referred to the original total planned value. This is a cost-based data point that equals the originally-estimated total cost for the portion of work being assessed. It can be all costs budgeted for an entire project, a work package, contract task, group of tasks, subset of tasks; any grouping you wish to assess. For example, if you want to track the task of painting a railing, you would include:

  • the total painter contract budget / estimate ($5,000)
  • the total (proportionate) management / overhead (indirects) budget / estimate ($300)
  • the cost of any provided materials ($100)
  • BAC = $5,400

Oftentimes in large projects, overhead and management (indirect) costs are not included, as it’s rightly assumed that managing the direct costs will control the indirect costs. More in this further on.

Actual Cost – AC

Another fundamental EVMS data point, actual costs, is one data point that at first seems straight forward, but it can have its own complexities during implementation. These complexities are best thought about before your project team gets too far into tracking your project, to avoid the GiGo effect. In essence, actual costs are a measure of what has been spent up to the current reporting date. For example, if you report monthly, the AC would represent what you’ve spent to the end of the previous monthly period. This alludes to two complications when determining AC.

The first of these complications involves these reporting periods. Unlike BAC, AC is defined by a point in time, and is often tied to partially-completed work. This means that the point in time must be well-defined, and the portion of the work partial payments cover are also well-defined. This is because, for example, if actual costs are delayed behind progress reports, you would end up reporting higher cost efficiency than is accurate. Conversely, if your actual costs include advance payments for work as yet to be completed, your cost efficiency would appear lower that is accurate. Therefore, the following guidelines should be followed to maintain accuracy, and to avoid GiGo:

  • Align status dates / reporting dates with all period reporting measures in EVMS, including AC. This means that any agreed-upon payments, sometimes referred to as accruals, should match the progress that has been measured / scored. For example, if there is partial progress on a task within the month (and reporting is done monthly), then calculations must be done to align total spent and accrued costs with the progress. Let’s assume that progress for the month includes 4 of 10 roughly equal sections of railing painted, and the fixed price contract for this work has a BAC of $5,000, to be paid upon completion. We have 40% of the work completed, put we are not due to pay for the work until it is completed. However, for EVMS to work properly, we need to recognize 40% of the costs as set aside for competed work to date; we need to accrue it (AC = 40% x $5,000 = $2,000).

There are accounting reasons to do accruals as well (partially-completed work represents a liability until paid for), but we don’t want to contaminate each function (Project EVMS tracking and Corporate Accounting) with requirements of the other; there may be slightly different accrual rules or status dates that Corporate Accounting requires, that if implemented, would interfere in the accuracy of EVMS calculations (GiGo risks again). Perhaps some data and processes can be shared, yet project teams should endeavor to create their own EVMS tracking tools to preserve data accuracy. This isn’t to say project teams can’t share cost and progress data with accounting teams (they should); they just need to maintain control over how that data is used in the project’s EVMS system.

Planned Value – PV

Similar to AC, Planned Value (PV), refers to an item’s costs. When partially completed, it is often referred to more specifically as the Budgeted Cost of Work Performed (BCWP), a point-in-time measure, or Earned Value (EV). Again like AC, PV needs to be aligned with the reporting period in order to assist in determining EV / BCWP. PV is the data point used to determine a task’s (or project / task grouping’s) progress as measured against the total original budget (Budget at Completion – BAC) for that task or task grouping. For example, similar to the railing painting example above for AC, 40% work completion measured against the $5,000 planned contract budget results in a $2,000 PV (scored as EV / BCWP). The obvious question now is of course, how is PV different from AC.

PV is designed to always measure against the original planned budget for a task. However, AC can vary greatly. In the railing painting example above, we used a simple fixed-price contract to simplify the explanation of AC. Yet many contracts have variable costs, change orders, an other such levers that change costs, and benefit from an EVMS system that helps flag the impact of these changes to project teams. For example, let’s assume that the painter notes that they are catching up to the fabricators of the railing and are finding that they are often waiting idly, something the contract did not address. The painter submits a change order for the additional idle hours, which is then accepted by the project team as a reasonable accommodation. This change order represents an additional $400 in agreed-upon payments that must now be added to the AC. Therefore $2,000 of fixed costs plus $400 in change order costs now results in an AC of $2,400 to be reported this period. That said, the PV does not incorporate this $400 in delay charges; rather it is tied to the budget for the work and remains at $2,000.

Earned Value – EV

As seen above, simply put, Earned Value (EV) represents the amount of PV that has been scored as earned, or completed. It’s easiest to think of PV and EV as one and the same concept, with PV referring to the originally-estimated value, and EV referring to the portion of PV that has been scored as completed, or earned to date.

Project Change

Now that we have began to consider variable costs and project change, we can to see how important having a strategy to manage this change in an EVMS can be. Project changes and variable costs by their nature change AC. To what extent they change your project’s BAC or EV / PV data is a matter of some debate. For example, some teams prefer to manage change through a lens of approvals, or in an environment where changes in costs create blame and internal political struggles. Other teams prefer to manage change in their EVMS as a natural feature of projects, something to be expected and managed, not something to be feared and punished. We will view change in the latter manner, and the following is how such an EVMS system of change can operate.

When a change order is approved, those (usually increased) costs are to be accounted for in the schedule and cost plan, as part of the forecasted remaining work. Once the change order work has been completed, its costs will then be added to the AC. If the change order removes cost, then those costs are not added to the AC, but they are scored as earned in the EV / BCWP. This will show in the EVMS as an increase in cost efficiency, which is how removing unneeded scope or finding savings would be expected to show. If the change order adds costs, the AC is increased accordingly, but the EV / BCWP should not include the extras, only the originally-planned costs. This will then have the EVMS output a cost inefficiency, which is the correct usage of the system. This really only needs to be dispositioned by the project team; perhaps a risk item has been quantified as an issue, or some other explanation. There is no need to add approved changes to the EV or BCWPP; adding them to the forecast or schedule plan allows for tracking of approved change, without breaking he EVMS outputs.

As a side note, many project teams are motivated to add approved changes together and “re-baseline” the project, effectively resetting the EV and BCWP to the AC. This resets all EVMS indicators, and in many minds, shows that the sunk costs are now approved and accepted. However, this is not how EVMS is designed to work. Project teams may instead consider maintaining an approved forecast, as well as a pending or working forecast instead, to help illustrate the current status of the project budget. The EV and BCWP, however, work best with as much historical / statistical data included in them as possible, especially as they are applied to EVMS metrics and formulas.

Cost Performance Indicator – CPI

The main cost performance indicator in an EVMS is referred to as CPI, and it is calculated as the EV divided by the AC, at a specified point in time. For example, a $2,000 EV having cost $2,400 in AC to complete would result in a CPI of 2000 / 2400, or 0.83. Since the CPI is lower than 1, you can easily spot a few characteristics about this package of work. First, you know that something has cost more than initially planned; perhaps scope was added via change order, or perhaps there has been some risk item realized as an issue, or perhaps both. Second, you also get some sense as to the impact of the variance. At an 83% cost efficiency, you know this work has been completed to date with a near 20% efficiency loss compared to the original plan. The next steps here are important; EVMS is a tool, of which CPI is a sub-set, and it is only useful if used as part of a management effort. In other words, having this CPI is only useful if it triggers actions. Perhaps the project team requires written dispositions for CPI changes of more than 5%. Teams should also provide an assessment as to the impact of this CPI on the final forecast; is this 0.83 likely to continue? Is the issue over with, and a slightly better CPI is predicted in the forecast at completion? These assessments should be performed whenever a metric like CPI is updated. Simply reporting the CPI may spark conversation at meetings, but teams should have assessments and dispositions ready. This way the EVMS will promote management of the work and associated issues, not management of the metric itself.

Concluding Remarks

In the next article in this series, we will continue to look at EVMS tools and metrics, starting to look at perhaps the more controversial SPI, or Schedule Performance Index. However, we already have a good appreciation for different foundational features of an EVMS. Actual Costs need to be tied to work that has been completed, and this requires rigid accrual and period reporting processes in order to avoid data can easily contaminate EVMS metrics. The Planned Value for tasks needs to be easily segmented with rules that allow for Earned Value to be scored accurately. Finally, these values need to be considered properly when processing the inevitable changes a project goes through, to avoid employing and EVMS suffering from “GiGo”, that does not assist in managing work, instead having teams manage metrics. In a dashboard culture, modern project teams may need to spend time setting these expectations early with their reporting audiences, and having a good dispositioning and assessment process should help bring focus back to what’s important; solving problems to achieve the project goals.

References:

Rose, L.T. and Fischer, K.W., 2011. Garbage in, garbage out: Having useful data is everything. Measurement: Interdisciplinary Research & Perspective9(4), pp.222-226.

Posted in Earned Value Management
Don’t get Burned by Earned…..Hours

Burned and earned hours are sometimes misunderstood. What are they? How do you calculate them? This article takes a deeper look at what these hours are and how to calculate them.

What are Burned and Earned Hours?

Burned hours, in many other industries, refer to hours that were non-billable, don’t contribute to the product or service being sold, or both. In project management circles, burned hours tend to refer to the actual hours spent on a task, as opposed to the earned hours. Earned hours represent the portion of estimated / baseline hours that were initially budgeted to get to the current state of progress of a task.

How to Calculate Burned Hours

To calculate burned hours in a project management environment, you simply need to account for all expended or charged hours. These are often referred to as the actual hours, or time-sheeted hours, etc. For example, if you had a crew of 3 work for an 8-hour day, then the burned hours would be:

3 x 8 = 24

Therefore, 24 hours have been burned.

How to Calculate Earned Hours

To calculate hours that have been earned on a task, we need to know the originally estimated hours and have some idea as to the rules of credit, so that we know how to score the progress of the task. Refer to our other article on rules of credit and progress for a discussion on that topic. For this example, let’s assume we are painting a large room. We originally estimated it would take our crew of 3, 2 days to paint the room. Therefore our total estimated hours is 3 x 8 x 2, or 48 hours. The room has 4 equally-sized walls to paint, and so our simple rules of credit are set at 25% per wall. At the end of the first day, the workers tell us they have managed to paint 2.5 walls. We can now calculate the earned hours:

2.5 walls x 25% per wall

= 2.5 x 0.25

= 0.625

= 62.5% completed

62.5% of the originally-estimated 48 total hours

= 48 x 0.625

= 30 hours earned

Final Thoughts

It’s clear how burned / actual hours are useful, in that they relate to costs expended and schedule time used. This is very useful in understanding your resource usage and expense, and in forecasting spend with a quick burn rate calculation, for example. However, earned hours are seemingly not as useful, at least intuitively. This is because they relate back to the original estimate, so they really don’t tell you much about what is happening now; this has led many on-the-ground managers to dismiss earned hours as a useful management tool. This may be so at the work face, however earned hours can be used as inputs into an Earned Value Management System (EVMS) to easily re-estimate cost and schedule forecasts. This allows project management team members to focus on flagging and solving macro-level progress issues, something burn rates and actual hours alone do not inherently allow. In future articles, we will expand on some of these tools, and how they can be employed in various ways (some easy, some complex) that your team may find useful.

Posted in Earned Value Management
Earned Value Management Series: Part 3 – Percent Complete(s)

When it comes to project management, the percent complete is an incredibly important measure. It’s a statistic that can be used to determine the status of a task in relation to its overall completion. From a management perspective, it also offers an objective way of measuring the amount of work that has been completed when compared with the overall scope of the project. The purpose of this article is to help explain exactly what a percent complete is and illustrate how it can be used by managers when overseeing projects.

What Is a Percent Complete? Simply put, a percent complete is the measurement of how much work has been done on a given task when compared with the total amount of work needed to finish said project. For example, let’s say that you have a project that needs to be completed by June 15th and there are 10 equal parts that need to be completed before it’s finished. If you’ve completed three parts by June 1st, then you’re 30% complete. While that may sound simple enough, sometimes figuring out what constitutes being 30% complete can get complicated depending on who you ask. Is it 30% of the total hours needed? Parts? Lines of code? Manhours? There are many different ways to measure what constitutes measuring percent complete.

Calculating Duration Percent Complete

A duration percent complete is a simple calculation of your project status and can be calculated at any time. The easiest way to calculate this is by dividing the total effort in hours by the total hours expected (work remaining) as follows:

% Complete = Total Hours / Remaining Hours

This requires, therefore, that you have re-estimated the remaining duration your task will take. If you simply remove spent hours from the original estimated hours, you will not be providing percent complete; you will be calculating percent of budgeted hours spent.

One other tip if you are calculating this manually, it is important to ensure that you round up the numbers correctly. If you only have a small number of hours left to work, then this will be easy to do. However, if there are a large number of hours left to work, then it is possible that rounding down, rather than rounding up will be more accurate. This is because adding a decimal point can create a result that looks like the value is decreasing when it actually isn’t. For example: If there are 10 hours of work left and 8 hours worked in total, then we would expect the % complete to equal 83%. Instead, rounding down would give us 80%. This may then be interpreted as being behind schedule when in fact you are on track.

Calculating Physical Percent Complete

Previously we discussed rules of credit as a method of measuring progress. These rules are essentially steps or sub tasks with progress weightings. This can be as simple as a project such as painting a room in your house. The task is to paint the room and the subtasks would be things such as buying paint, buying drop cloths, putting up plastic to protect furniture, cleaning the room, etc. Tasks that are 100% must have all of their steps completed. Sub tasks, however, can be individually assessed for completion, and contribute up to their pre-determined portion of the task’s total percent complete. To calculate this, therefore, use the following formula:

% Complete = (Step 1 % Complete X Step 1 Weighting) + (Step 2 % Complete X Step 2 Weighting) + etc.

The key here is to ensure there are enough steps per tasks to prevent large gaps in progress scored. Similarly, too many steps may become difficult to manage. To help with this, you might consider bundling similar steps together, making them easier to assess progress. If you have 4 similar steps, such as cover the sofa, cover the lamp, cover the TV, and cover the table, you might group those together into “cover the furniture” and simply score 25% for this step for each item you see covered.

The key to successful physical percent complete assessment is in having predetermined rules of credit established. These should contain steps that are easy to score, and allow for meaningful progress between reporting periods.

Calculating Units Percent Complete

Tracking progress through units may be considered a version of physical percent complete. However many scheduling and tracking programs offer this third way of tracking, linked to the expenditure of tracked resources.

Tracking resource usage in Primavera P6 is seen as important for many reasons. It allows you to monitor your resource capacity and provide updated information through its built-in reporting so you can act accordingly. You can view resource usage from the Unit Resource Usage report or from a custom report that you create.

To use this method of tracking progress, you would need to re-estimate the remaining units required to finish a task, and update your schedule accordingly. The units themselves represent progression steps, much like in physical percent complete. For example, if your schedule is tracking the installation of 700 windows in a large building project, you may decide to input your windows as resources to be expended in your tasks. Therefore, you could simply count the number of windows remaining to be installed to score this task’s completion percentage. However, if more windows are added to or removed from your scope, you would need to account for those.

This method, therefore, suffers from the difficulties of re-estimation that duration percent complete presents. Yet it does allow for easy tracking of progress without requiring sub-task assessments as would physical percent complete. Progress in this manner is calculated as follows:

% Complete = Total Units / Remaining Units

Concluding Remarks

The traditional way of measuring project progress is using the ratio between the total work effort and the total time that was planned for the project in advance. This method is usually referred to simply as “percent complete”. However, because percent complete measurements are subject to human interpretation, they can be misleading and often result in inaccurate status reports leading to mismanaged projects. The duration percent complete method helps by bringing focus on the need to a re-estimation of remaining work. This, if done properly, will show a more realistic progression figure. However, physical percent complete reduces the need for re-estimation of work, as each step is scored based on its completion, not by the work or time expended. In certain cases, tracking units or resources can further remove the interpretation of progress present within each physical percent complete step. Therefore the method used to score each task’s progress should be decided by the project team, aiming to best match the method with the type of work each task represents.

The next article will continue discussing progression, this time with more detail and technical examples.

Posted in Earned Value Management
How To Make A Schedule: a Blog About Various Tips and Techniques to Make Scheduling on Projects Easier

Anyone in project management has been (or will be) asked to produce a schedule for their next project. This task is never easy and here are some steps you can take that may help you when the time comes for you to estimating on your next project.

Define your scope of work

It is important to define your scope of work before you start planning a project. The scope of work describes the project from start to finish, including what is in and out of the project, how it will be done and how long it will take. It should also include all resources needed for the completion of the project. The scope of work is a living document that evolves over time as you progress with your project. It is important to review and update your scope on a regular basis. This ensures that you are still on track with the vision and goals that were originally set at the beginning of your project.

Understand what is task and what it is not

There are many misconceptions regarding project scheduling. For instance, a task is not a task if it is not time-based. In other words, if the assigned date is not relevant to the project, it cannot be considered as a task. Thus, if an activity of eight weeks is embedded into a project, but its start and end do not depend on any external event (e.g. construction start), such activity cannot be considered as a task in scheduling software. If your activity is non-time-based, you should rather design a workflow that explains how it must be done. With regards to the resources involved in project scheduling, you need to assign them along with their skills to the tasks. The skills set of each resource should comprise one or more skill codes that describe what exactly this person can do. As for roles, they should be assigned to both the resources and tasks; this way the scheduler will know who is responsible for doing what at which time and make changes when necessary. In addition to the abovementioned aspects of project scheduling, you may also want to include some other specific concepts like milestones or deliverables in your workflows; however, these are less important than the mentioned aspects since they do not affect how tasks are scheduled in detail.

Use Milestones to Help Track Progress

Milestones are a fantastic way to break down large tasks, and it works especially well for projects. Let’s say you have a project that involves writing an ebook and then marketing it. If you add Milestones for “Writing Ebook” and “Marketing Ebook,” you can see at a glance where you’re holding up and how far along you are. And if you use the percent complete field on each Milestone, you’ll be able to track your progress on both tasks at the same time! This is a great way to keep tabs on both where you’re going and how quickly you’re getting there.

Brainstorm at a white board

The most productive brainstorming sessions are done at a whiteboard. Depending on your capabilities in a remote-work environment, you may consider this technique or some virtual version of it. Here are some of the reasons why:

  • No Distractions – When you work on a whiteboard you can’t “distract” yourself with news, Facebook, and the Internet.
  • Focus on Content, not Design – You have to think about what you write and design your own template for what you want to accomplish.
  • Group Interaction – When you work at a whiteboard, others in the group can interact with your ideas. They can add their own thoughts and modify yours.
  • Easy to Change – You can’t change things easily on a computer – but when you work at a whiteboard, it’s easy to modify your ideas.
  • Fast – When you work at a whiteboard, you don’t have to wait for the computer to load!
  • More Fun – It is more fun working at a whiteboard than sitting in front of a computer.

Set your priorities when scheduling your project

For some people, the easiest way to schedule a project is to figure out all the tasks that need to be done and then put them in order. Tasks are often broken down into subtasks, and those might be further divided into more detailed steps. The disadvantage of this approach is that it’s difficult to see the big picture when you’re focusing on small details. It’s also easy for something to fall through the cracks if several people are involved in coordinating different parts of the project. A better way to organize your project is by establishing a set of priorities. This helps you avoid getting bogged down in minutiae and gives you an overall view of what needs to be accomplished. It can also help you spot potential problems before they become major roadblocks. For example, if a particular task requires input from multiple people and one of those people is going to be out of town during the time period you’ve scheduled for that task, it’s best to address that issue sooner rather than later so you can get everyone on board with your revised schedule.

Creating a schedule that works

Project scheduling means creating a plan that identifies the activities needed to complete a project and when they will take place. It helps you to define the tasks needed to accomplish the project and schedule them in order of priority. Scheduling is essential for planning and tracking progress, as well as for keeping the project on track. To be effective, you need to not only identify activities and their dependencies, but also understand how long each activity will take. This is where good project management software can come in handy. It can help you manage your resources more effectively while still allowing you to spend time managing your projects instead of managing your schedule.

In Conclusion

For a project to be successful, it is important that there is proper planning. This will ensure that the project is completed on time and within the budget that has been set out for it. Scheduling for a project helps keep the project organized and ensures that tasks are completed in the correct order. This allows you to get a better understanding of how your project will run, making it easier to estimate costs and helps you run into less problems along the way.

Defining tasks, using milestones, brainstorming, and employing software tools can help you along the way and bring you towards your goal of successfully managing a project.

Posted in Project Scheduling
Earned Value Management Series: Part 2 – Progress and Rules of Credit

Whether you are new to the principles of Earned Value, this article will give you an explanation of what is really involved in measuring progress on your investment. We will also provide some basic ways to keep your project on track and some best practices that you can use to improve your program today.

Progress Measurement

If we were to tasked with tracking the progress of some work or project, we may track it based on a few notions of progress. For example, let’s track the installation of an underground cable, 100 kilometers in length. We’ve estimated the task will take our crew 100 days to complete. Currently, we are 25 days in, and 25 kilometers have been installed. We could say we have completed 25 of 100 days of work, or 25 of 100 kilometers of cable. This is a nice example in that it is easy to assess progress in these ways. However, there are complications even in this scenario.

One complication perhaps more obvious than others, occurs when the work takes more or less time than estimated. If we had completed 25 kilometers of cable but it took our team 30 days, then we cannot say we have completed 30 of 100 days of work. We would quickly rely on the kilometers of cable installed as our basis of progress instead of days worked. We could then use this to recalculate our remaining days of work:

  • 25km of 100km installed = 25% of the cable
  • 30 days to install 25km of cable = our rate of progress
  • Based on this rate, installing 25% of the cable in 30 days means we would expect 50% to be installed in 60 days, and 100% in 120 days

The formula used here is simply 30/X = 25/100, where X is the revised total time for the work, based on the current rate of progress. Simplified, that formula shows X = 30 / 0.25, or the new total time = the time taken so far divided by the percent completed so far. This may seem intuitive, and rightfully so; in project management terms, we are applying our known productivity to date to the remaining work to re-estimate our total duration.

In an Earned Value Management (EVM) system, we can say that the 25 kilometers of cable installed represents 25% of the total value of the 100km-long task. In other words, we can say we’ve earned 25% of the task’s value.

This example is quite idealized, and most of the time tasks do not so easily translate into percent completes; they are harder to assess. For example, let’s say the cable installation requires some initial preparation, has some corners to its route, and has some roadways to traverse over or under. Finally, let’s also assume this cable installation is in fact planned to be 187 kilometers in length. In this less idealized but more realistic version, it can be harder to quickly assess progress or earned value. How much value do we assign to preparations, difficult sections (corners / crossings)? With 187 kilometers of cable to install, even straight line progress is not as easy to assess percent complete without the help of some mathematics and formulas.

Rules of Credit

We could be exact, devise a progress measurement system whereby the non-linear work is extracted from the estimate into more details; preparation work, each corner and crossing / obstacle. This is doable, although certainly requires more up front work and more effort in tracking. For a job that will complete within a few months, this extra effort is most likely not worth the cost.

One way to avoid this extra effort in tracking progress would be to simplify the assessment and measurement processes. Rules of Credit is a system of progress measurement designed to accommodate non-linear and difficult-to-progress tasks.

Rules of credit are simply the rules by which we earn value and measure progress; it’s a list that maps our estimated costs with easily identifiable steps of progression. So, rather than dividing 187 kilometers by 100 to give us each percentage of progress in kilometers, we may look at simplified and easily measurable rules of credit while we estimate and plan the work, like the following:

  • Equipment Setup Completed = +5%
  • 0km to 23km (to first corner) = +10% (15% total)
  • First corner completed (km #24) = +5% (20% total)
  • 24km to 94km = +29% (49% total)
  • Roadway crossing completed = +8% (57% total)
  • 94km to 176km = +28% (85% total)
  • Second corner completed (km #177) = +5% (90% total)
  • 180km to 187km (to completion) = +10% (100% total)

In our example, these rules of credit were decided by the project team, to reflect the value each step represents. These take into account the same assumptions and data that the cost estimate did, so little extra work was required. To assess this progress, you can give the field staff freedom within each step, but progress must be matched as each rule of credit is achieved. So equipment setup can be scored 0-4% complete, but cannot be credited the full 5% until it has been completed. The first 23 kilometers can be scored anywhere between 5% and 14% by the field staff, but cannot be awarded the full 10% / 15% of total until the first corner is reached. This system allows the field staff the freedom to assess their progress to signal higher or lower productivity.

In addition to limiting field assessments to discreet and finite steps, rules of credit also simplify reporting and tracking. In our example, the rules of credit were designed with the idea in mind that all of the steps were each likely to take less than 2 weeks to complete. The project reporting is also set to a 2 week frequency. This insures that each reporting period should show some progress, even if the field assessments are not done. For example, if field assessments have not been coming in due to staffing issues, but the project team is aware that the work is now ongoing somewhere in the 24th to 94th kilometer, the first corner can be scored as completed. This protects the project team from under-reporting their project by large margins. Similarly, scoring the project too optimistically is avoided simply by requiring completion of each step.

This system of steps and gates provided by the rules of credit allows for some limited movement, but offers simple control of progress measurement throughout the task.

Implementation

Now that we have some idea as to what rules of credit are and how they can be used, let’s review how they can be implemented to help keep your project on track.

Once we have established our earned value using rules of credit (or detailed progress tracking), we can apply this value to the Earned Value Management (EVM) system for further analysis. In terms of cost efficiency, EVM enlists the help of a metric aptly labeled the Cost Performance Indicator (CPI). This is calculated by taking the earned value (EV) of work that has been completed divided by the actual cost of that work. As shown above, the earned value of a task is calculated by applying the progress percent complete to the estimated total cost for that work. The actual cost (AC) is simply what has been actually spent on that work (or is expected to be spent). This simple metric, CPI = EV/AC, can help determine current monetary performance in relation to the estimated costs quickly. A result of less than 1 means costs are exceeding estimates. A result of 0.5 means costs are double that of estimates. A result above 1 means costs are lower than estimated. It’s a simple management tool that can flag issues if employed correctly.

One pitfall many teams fall into is in reporting only a project-level CPI. This may end up doing more harm than good. For example, if there are packages of work that are exceeding estimated costs and packages that are under estimated costs, the project CPI may show as near 1. However, this would hide the opportunity for further cost savings in the work exceeding estimated costs. To combat this, in addition to a project-level CPI, it’s advised that project teams report sub-units of the project CPI as well. For example, you may report each contract’s CPI, or you may report each structure’s CPI in a multi-structure project. Although each project may be different, the need for a deeper view should be met with some discussion and strategy from the project team.

Another obstacle in the way of successful CPI usage is how project teams handle inevitable change. When work is added or subtracted from the project, how that change is integrated into the estimate, and by extension the EV of the affected task, greatly affects the validity of he CPI measure. If work that is removed is kept in the estimate, then it may appear as completely earned with zero cost, seemingly artificially inflating CPI. Carried to the extreme, if the entire project is removed, does that not mean the cost performance is extremely good? If work that is added is not added to the estimate, then its earned value remains as zero but with actual costs. This would then deflate CPI; but is this a problem? If the project sees large amounts of added work, not adding earned value for it would quickly show low CPI numbers, alerting the project team to the negative cost impacts of all of the added work.

To determine the best way to handle change, it is best to recall the purpose of earned value. The purpose is to allow simplified progress measurement and forecasting, so that managers can easily identify and focus on problems. From a cost perspective, finding work that can be removed is cost efficient. As successful entrepreneur Elon Musk opines, removing parts and processes is a valuable efficiency dogma, with may downstream positive effects (Pressman, 2021). To reward removal of scope / work, we should therefore embrace the concept that removing scope (and its associated costs) equates to earning its estimated value.

In a similar line of thought, adding scope (and its associated costs) to a project, although sometimes necessary for the project to be successful, should represent no additional value, only additional cost. The reasoning here is that, from the perspective of cost, extra costs are extra costs, regardless of their necessity. Having extra scope bring its costs to CPI but not any of its earned value, helps bring the hard truth of these costs to the project team. Therefore, for best results in using EVM and its CPI tool, incorporating project changes should follow this simple rule: If costs are added do not include any extra earned value; if costs are removed, then score that value as earned.

Concluding Remarks

In summary, Rules of Credit allow a project to easily implement EVM tools such as CPI. The CPI tool in particular can help project teams flag cost problems. It can also reveal opportunities for cost savings, if implemented in more aggregate detail than simply at the total project level. Incorporating changes can interfere with CPI if done incorrectly, but an easy guiding principle can preserve the EVM system in these cases; adding scope, don’t add value; removing scope, value is earned. In terms of Rules of Credit, they provide the means by which progress is tracked. So in cases of additional scope, Rules of Credit can still offer a way to easily monitor progress, even if that progress is contributing to work package or project EV. In this way, project teams may wish to track changes as miniature projects, calculating EV for the change itself, just not passing this on to contaminate package / project / contract-level CPI analysis.

In the next article, we will assess how progress measurement in EVM can best be applied to a project’s schedule.

References

Pressman, M. (2021). Elon Musk Reveals His 5-Step Engineering Protocol. Available at: https://cleantechnica.com/2021/08/16/elon-musk-reveals-his-5-step-engineering-protocol (Accessed: Jan 3, 2021).

Posted in Earned Value Management
Earned Value Management Series: Part 1 – General Introduction to Earned Value

This series is designed to work our way from the basics of Earned Value Management (EVM), into the best practices, and eventually beyond, to explore improvements and advanced concepts. The intent is to provide a roadmap for those looking to learn about EVM, or for those looking to review their knowledge and stimulate their advanced learning in this field.

In this, Part 1, we will look at the basic concept of EVM: what is it? why is it useful? how is it used?

Management

Earned Value Management, at its heart, is a way of managing projects. One natural approach to managing a project would be to simply hold daily meetings, asking everyone on your project team what they are doing, and them giving them direction. You would be relying on your own skills and way of managing, your own methodology. What sorts of questions would you have? Likely, you would focus on some “what” questions: “what did you get done yesterday?”, “what are you planning to work on today?”, “what is important?”, “what can we move to lower priority?”, “what exactly does our customer want in the end?”. You would likely also ask some “when” questions: “when will you finish what you are working on?”, “when can you start this other work?”, “when can you get the materials we need?”, “when will the contractor be available?”, “when does the customer need the job done by?”, “when do you think we will be done the job?”. Furthermore, since project teams use labour, material, equipment, and other resources, you will likely be concerned with “how much money” questions: “how much did we spend yesterday?”, “how much have we spent so far?”, “how much money do we have left?”, “how much will the whole job cost?”, etc. After answering your many questions, you would then direct your team, helping to overcome obstacles, with the aim at staying on track.

If this example made sense to you, or if it seems to be at least a reasonable natural approach to managing a project, you already understand the purpose of EVM; it is simply a more rigorous methodology. As in most modern project management systems, in EVM, many of the “what” questions are bundled together into the category of “scope”. The “when” questions are represented by the category “schedule”. Finally, questions about money fall into the category of “budget” or “cost”. (Kloppenborg, 2012)

Scope – Schedule – Budget: The three core concepts of the EVM methodology

Many other important and vital categories exist in EVM and in the Project Management field, yet they all seem to find their way into these three from a management methodology standpoint. Safety; it needs to be in your scope, it needs resources and time allowed for in your schedule, it reduces risks and associated costs. Quality; it needs to be considered in order to meet scope specifications, it may require additional time to achieve, and these measures are sure to affect the budget. Environment; regulatory requirements must be included in the scope, approval will affect schedule, mitigation and management requires extra funds. Risk; is tied to each scope item, considers schedule impacts, and defines the budgeted contingency amount. As you consider how you manage projects yourself, looking at your methods through the lense of “scope / schedule / budget” may help you simplify your methods. That’s one of the keys to the success of EVM; it offers a systematic approach that clarifies and simplifies project management methodology. Many are tempted to overly complicate project management, as intelligent people are often tempted to do (Lebowitz, 2015). However, success is found in employing EVM as a systematic approach, relieving the team from spending valuable brain power on how best to manage, allowing everyone instead to focus their skilled energy on solving the problems that EVM helps to bring into focus.

Here we see the second benefit to Earned Value Management. EVM offers a methodology that helps organize a comprehensive project management system into a concise, clear, and cogent framework. By doing so, project teams are able to focus on problem solving, and less on problem identification. This has the further benefit of presenting future problems earlier, allowing the team more valuable time to react. Projects are by their nature emergency-making enterprises; it’s not a production environment where all problems have been ironed out. Therefore, we should all want to spend more time on solving problems in advance instead of reacting to them. This is surely less stressful, and history tells us this approach is also more successful in the end.

Earned Value

Morin (2009) reviewed the history of Earned Value Management, showing how it emerged from struggles with the useful, but limited, Program Evaluation and Review Technique (PERT) that was in vogue in the 1950’s and 1960’s. The PERT methodology focused on constantly re-estimating total project cost, including all money spent to date and a new estimate of the cost of all remaining work. However, large projects using PERT seemed unable to get an idea of how current progress was to be assessed. Instead, teams were busy constantly updating the estimates higher and higher. During this time, several ambitious and unprecedented large military projects were being undertaken, including the notable Minuteman Missile project. EVM was proposed as as a replacement for PERT, as it was able to bring focus to progress assessment:

“Earned Value is a concept – the concept that an estimated value can be placed on all work
to be performed, and once that work is accomplished that same estimated value can be
considered to be “earned.” The utility of this concept as a management tool is that the
summation of all earned values for work accomplished when compared to what was actually
expended to perform the effort can provide management with a comprehensible, objective
indicator of how the total effort or any identifiable segment is progressing”

Morin (2009), referencing A. E. Fitzgerald, “Earned Value Summary Guide”, Feb. 25, 1965.

Now we are moving from the “management” part of EVM to the “earned value” part. Earned Value is the foundational concept that allows the entire EVM methodology to function. The 50+ year-old concept, is simply a way to match current progress against what your initially thought it would cost. For example:

Brick Wall Project

  • 8 feet high, 10 feet wide
  • Initial estimated total project cost, $3,000

Earned Value Assessment

  • After building the first 4 feet (10 feet wide), $2,000 was spent
  • 50% of the work is done, 50% of $3,000 is $1,500
  • Therefore $1,500 of value was earned, while $2,000 was spent

Earned value, then, is simply a way to measure current progress against your original estimate. Although a simple assessment, we can now easily ascertain many other aspects of our project. For one, we can provide what the PERT methodology did; we can easily estimate our total cost at the completion of the job by applying the money we’ve spent against the percent complete. 50% complete and $2,000 spent would mean we will likely spend another $2,000 to complete the job. This puts our estimated completion cost at $4,000. However, we can also score our current progress, something PERT could not. We have earned $1,500 of value, but we’ve spent $2,000 to get it. We have a cost efficiency of 1500/2000, or 0.75. In other words, for every dollar we spend, we are only getting $0.75 worth of our planned work completed. This is a good number to know. Our project team can now ask probing questions for tasks like this that show a cost efficiency lower than 1. In fact, you could sort all of your tasks in a spreadsheet by this number and the task total budgets. This will allow your team to focus on specific big impact issues.

For longer tasks, regular assessments can point out big issues early on. For example, if we have a 4-week task that has a budget of $1,000,000, assessment in the first week can show our cost efficiency and allow the project team 3 weeks to deal with a low cost efficiency number. Now, sometimes there is a strong urge to increase the original estimate once a large cost efficiency gap is found. In our brick wall example, we could say the estimator used an out of date number, and the brick layer contractor is working efficiently. In other words, the estimate is to blame, not the contractor. However, this urge must be resisted, or else you will break the foundation of EVM, and you will lose its benefits.

Planned Value

Now we need to dig deeper into the concept of “earned value”. Above we learned how EVM assigns a value to a task’s progress using its percent complete and its original estimated cost. The original estimated cost is referred to commonly as the “planned value” (PV). However, if the original estimate is bad, how do we trust our assessments? The answer is also simple, but not often stressed; the planned value is simply a reference point. In fact, I would go so far as to say it is expected to be wrong. Often, project teams have the urge to equate the planned value with something akin to: “an accurate estimate assuming all variables that should be know to an expert in this field“. As an example, for our brick wall project, a good estimate would be one that the brick layer may estimate based on his most recent similar work. However, EVM is not interested in the absolute accuracy of the estimate. Sure, we all want an accurate estimate to create a proper budget, but EVM is about managing the project after that estimate has been approved. Unlike PERT, EVM is not in the business of estimation, it is in the business of management. Instead, we should think of planned value like a surveyor’s reference point.

As the surveyor measures targets, all data points are taken in reference to a single reference point. If the reference point changes, then this results in one of two things: garbage data, or extra effort to tie together survey data taken from one reference point with data taken from another reference point. The more reference points you have, the more time you spend processing the data than analyzing it. For project teams, planned values are their reference points. Cost efficiency assessments over or under 1.0 should be expected, we simply need to disposition them, and possibly adjust our targets. For tasks that appear to have been under-estimated, we can report the new target efficiency (say 0.75) and the resulting estimated total cost (say $4,000 for our brick wall). Upon further assessments, we can look for further deviations from the new target. Further deviations would need another explanation other than estimation issues, and this may point to mitigating actions being required. Changing the planned value to maintain a cost efficiency score of 1.0 wastes precious analytical effort, and all too often invites managing or gaming the numbers to please clients and senior managers instead of managing the work. So, like the surveyor, project teams can work best with a solid reference point, without needing to change it as data starts coming in from their measurements. This maintains the simplicity of implementing EVM while still allowing project teams to track concerning trends.

In Conclusion

Earned Value Management is a simple project management methodology that is meant to focus project teams on managing work and progress rather than managing data and estimates. The concept of “earned value” allows a task’s percent complete to translate into costs, providing simple progress assessment while allowing current and future issues to be easily identified, sorted, dispositioned, and tracked. It’s a problem identification tool. Project teams who best understand this concept and how to use it consequently become better at identifying problems, and identifying them sooner. Using EVM as intended frees up project teams to spend more time analyzing progress issues and thereby more time solving such issues. Projects that have more problems solved, and solved earlier, are more successful. They cost less, take less time, and are less stressful for staff. In the next part, we will look further into some of the analysis tools EVM provides, along with specific terminology and assessment formulas. Further on, we will discuss limitations of EVM, and will end this series discussing updates and additions to EVM that solve these limitations.

References:

Kloppenborg, T.J. (2012). Contemporary Project Management, 2e. South Western.

Lebowitz, S. (2015). 7 surprising downsides of being extremely intelligent. Available at: https://www.businessinsider.com/downsides-of-being-extremely-intelligent-2015-8 (Accessed: Dec 23, 2021).

Morin, J. (2009). How it all began. The creation of earned value and the evolution of C/SPCS and C/SCSC. PM World Today, 11(12), pp.1-8.

Posted in Earned Value Management